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Abstract

In this paper the steady free convection boundary!layer ~ow along a vertical surface embedded in a porous medium
with Newtonian heating is investigated[ The mathematical problem reduces to a pair of coupled partial di}erential
equations for the temperature and the streamfunction\ and full numerical\ asymptotic and matching solutions are
obtained for a wide range of values of the coordinate along the plate[ The results for the temperature pro_les on the
plate and in the convective ~uid are presented[ A comparison between the full _nite!di}erence solution and the small
and large series expansion solutions illustrates that the full numerical solution is accurate[ Furthermore\ a matching
closed form of solution for the scaled temperature on the wall is _tted to the theoretical results and this will be useful in
numerous engineering practical applications[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

` the magnitude of the acceleration due to gravity
hs heat transfer coe.cient
H scaled wall temperature
K permeability
l streamwise length scale
T temperature
T� ambient temperature
"u¹\ v¹# velocity components
Uc characteristic speed
"x¹ \ y¹# Cartesian coordinates[

Greek symbols
a thermal di}usivity
b coe.cient of thermal expansion
G"[ \ [# incomplete Gamma function
uw wall temperature
n kinematic viscosity
c streamfunction[
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0[ Introduction

Heat transfer in saturated porous media has received
growing interest during the last four decades[ To a large
extent\ this interest is stimulated by the fact that thermally
driven ~ows in porous media are of considerable practical
applications in modern industry[ These include the util!
ization of thermal energy\ design of building components
for energy consideration\ control of pollutant spread in
groundwater\ design of nuclear reactors\ solar power col!
lectors\ compact heat exchangers\ food industries\ to
name just a few applications[ An excellent review of exist!
ing theoretical and experimental work on this subject can
be found in the recent monographs by Nield and Bejan
ð0Ł and Ingham and Pop ð1Ł[

The usual way in which thermal convection ~ows in
porous media are modelled is to assume that the ~ow is
driven either by a prescribed surface temperature or by a
prescribed surface heat ~ux[ Here a somewhat di}erent
driving mechanism for free convection along a vertical
surface embedded in a porous medium is considered in
that it is assumed that the ~ow is set up by a Newtonian
heating from the surface[ In particular\ the heat transfer
from the surface is taken to be proportional to the local
surface temperature and this situation was recently con!
sidered by Merkin ð2Ł for the corresponding problem of
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a viscous "non!porous# ~uid[ It is worth mentioning that
a similar situation to the present problem arises in con!
jugate convective ~ows\ where the heat is supplied to the
convecting ~uid through a bounded surface with a _nite
heat capacity[ Papers by Pop et al[ ð3Ł\ Vinnycky and
Kimura ð4\ 5Ł\ Lesnic et al[ ð6Ł\ Pop and Merkin ð7Ł and
Higuera and Pop ð8Ł have treated some aspects of the
conjugate heat transfer e}ects in porous media and an
excellent review article on this topic has been recently
published by Kimura et al[ ð09Ł[

A solution is obtained for the present situation fol!
lowing a method which is similar to that presented in the
Refs ð3\ 6\ 7Ł[ Series expansions which are valid both near
the leading edge and far downstream of the plate are _rst
obtained[ These two solution regions are then joined by
a numerical solution of the full boundary!layer equations
using a _nite!di}erence scheme in combination with the
method of continuous transformation proposed by Hunt
and Wilks ð00Ł[ It is found that near the leading edge the
~ow is driven\ at the _rst!order\ by a constant heat ~ux
from the surface\ and the higher!order terms are then
perturbations of the standard uniform heat ~ux solution
which is the same behaviour seen in the corresponding
conjugate problem[ However\ there is an essential di}er!
ence between the present case and the conjugate problem
when the solution far downstream is considered[ Namely\
for the conjugate problem\ the ~ow far downstream
approaches the standard isothermal wall solution\ whilst
for the present situation the ~ow far downstream gives
rise to a new similarity solution which can be found
analytically[

1[ Basic equations

Consider the steady free convection ~ow along a ver!
tical ~at plate which is embedded in a porous medium at
the ambient temperature T�[ The ~ow is assumed to
be set up by a heat transfer from the surface which is
proportional to the local surface temperature\ i[e[

1T
1y¹

�−hsT\ on y¹�9 "x¹×9# "0#

where "x¹ \ y¹# are the Cartesian coordinates measuring
distances along and normal to the plate\ T is the tem!
perature and hs is a constant heat transfer coe.cient[

Based on the boundary!layer and DarcyÐBoussinesq
approximations\ the governing equations are simpli_ed
to the following form]

1u¹
1x¹

¦
1v¹
1y¹

�9 "1#

u¹�
`Kb

n
"T−T�# "2#

u¹
1T
1x¹

¦v¹
1T
1y¹

�a
11T

1y¹1
"3#

which have to be solved subject to the boundary con!
ditions

v¹�9\
1T
1y¹

� −hsT\ on y¹�9

u¹:9\ T:T�\ as y¹:�

u¹�v¹�9\ T�T�\ at x¹�9[ "4#

Here "u¹\ v¹# are the velocity components along the "x¹ \ y¹#
axes\ ` is the magnitude of the acceleration due to gravity\
K is the permeability of the porous medium\ b is the
coe.cient of thermal expansion\ a is the thermal di}u!
sivity and n is the kinematic viscosity[

Let us now introduce the following dimensionless vari!
ables

x�x¹:l\ y�hsy¹\ u�u¹:Uc\ v�lhsv¹:Uc\

u�"T−T�#:T� "5#

where l is the streamwise length scale and Uc is a charac!
teristic speed which are de_ned as

l�"`KbT�#:"anh1
s #\ Uc�ah1

s l[ "6#

Substituting the transformation "5# and "6# into Eqs[ "1#Ð
"3# leads to the non!dimensional equations

1u
1x

¦
1v
1y

�9 "7#

u�u "8#

u
1u

1x
¦v

1u

1y
�

11u

1y1
"09#

and the boundary conditions "4# become

v�9\
1u

1y
�−"0¦u#\ on y�9

u:9\ u:9\ as y:�[ "00#

2[ Solution

2[0[ Solution for small x

Here the ~ow develops initially by the heat ~ux from
the surface\ which suggests the transformation\ for a solu!
tion valid near the leading edge\

c"x\h#�x1:2f "x\h#\ u"x\h#�x0:2h"x\h#\ h�y:x0:2

"01#

where c is the streamfunction which is de_ned in the
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usual way as u�1c:1y and v�−1c:1x[ Using Eq[ "01#\
we obtain h�1f:1h\ and thus Eqs[ "7#Ð"00# reduce to

12f

1h2
¦

1
h

f
11f

1h1
−

0
2 0

1f
1h 1

1

�x0
1f
1h

11f
1h 1x

−
1f
1x

11f

1h1 1 "02#

with the boundary conditions

f�9\
11f

1h1
�−00¦x0:2 1f

1h 1\ on h�9

1f
1h

:9\ as h:�[ "03#

These boundary conditions suggest looking for a solution
of Eqs[ "02# for small x of the form

f "x\h#� s
j�9

�

xj:2fj"h# "04#

where f9 is given by

f 19 ¦
1
2

f 9 f ý9−
0
2

f9?
1�9

f9"9#�9\ f ý9"9#�−0\ f ?9"�#�9 "05#

and for j−0\ we have the following]

f 1j ¦ s
p�9

j

$0
j−p¦1

2 1 fj−p f ýp−
"p¦0#

2
f ?j−p f ?p%�9

fj"9#�9\ f ýj"9#�−f ?j−0"9#\ f ?j"�#�9[ "06#

Here the primes denote the di}erentiation with respect
to h[ Eqs[ "05# and "06# for j�0\ 5\ have been solved
numerically using the NAG routine D91HBF ð01Ł\ to
obtain the small x temperature at the wall as

u"s#
v "x#�x0:2f ?9"9#¦x1:2f ?0"9#¦xf ?1"9#¦x3:2f ?2"9#

¦x4:2f ?3"9#¦x1f ?4"9#¦x6:2f ?5"9#¦[ [ [

�0[1848x0:2¦9[8404x1:2¦9[3318x¦9[0076x3:2

¦5[3318×09−2x4:2−5[3340×09−2x1

−8[3491×09−3x6:2¦[ [ [ "07#

Eq[ "05# for the leading!order term f9 gives the uniform
heat ~ux solution[ The numerically retrieved value of
f ?9"9#�0[1848 is in very good agreement with the values
0[1850 and 0[1842 which have been previously obtained
by Rees and Pop ð02Ł and Kumari et al[ ð03Ł\ respectively[

2[1[ Solution for lar`e x

In this case we take

c�xf½ "x\y#\ u�xh½ "x\y#[ "08#

On applying the transformation "08# to Eqs[ "7#Ð"00#
yields h½�1f½:1y and f½ is determined from the equation

12f½

1y2
¦f½

11f½

1y1
−0

1f½

1y 1
1

�x0
1f½

1y
11f½

1y 1x
−

1f½

1x
11f½

1y1 1 "19#

along with the boundary conditions

f½�9\
11f½

1y1
�−

1f½

1y
−x−0\ on y�9

1f½

1y
:9\ as y:�[ "10#

These boundary conditions suggest looking for a solution
of Eq[ "19# of the form

f½"x\y#�f½9"y#¦x−0 ðln"x#f0"y#¦f½0"y#Ł¦[ [ [ "11#

where the O"x−0# term includes the eigensolution f0

due to the leading edge shift e}ect as mentioned by
Stewartson ð04Ł[ The functions f½9\ f0 and f½0 are given by
the following ordinary di}erential equations]

f½ 91¦f½9 f½ ý9−f½ ?1
9 �9\

f½9"9#�9\ f½ ý9"9#�−f½ ?9"9#\ f½ ?9"�#�9 "12#

f01¦f½9fý0−f½ ?9f?0�9\

f0"9#�9\ fý0"9#�−f?0"9#\ f?0"�#�9 "13#

f½ 01¦f½9 f½ý0−f½ ?9 f½ ?0−f½ ?9f?0¦f½ ý9f0�9

f½0"9#�9\ f½ ý0"9#�−f½ ?0"9#−0\ f½ ?0"�#�9 "14#

where now the primes denote di}erentiation with respect
to y[ From Eqs[ "12# and "13#\ the term f0 can be ex!
pressed as

f0�a9 f½9 "15#

for\ as yet\ an undetermined constant a9[ Introducing Eq[
"15# into Eq[ "14# and using Eq[ "12# yields

f½ 01¦f½9 f½ ý0−f½ ?9 f½ ?0�a9 f½ 91

f½0"9#�9\ f½ ý0"9#�−f½ ?0"9#−0\ f½ ?0"�#�9[ "16#

Eqs[ "12# and "16# can be solved analytically to give

f½9"y#�0−e−y\ f0"y#�a9"0−e−y# "17#

f½0"y#�a9"0−y#−e−y−a9e
−e−y

¦a9"0¦e−y#"G"9\e−y#−G"9\0##¦c"0−e−y# "18#

where c is an undetermined constant\ a9�e:"e−0# and

G"a\x#�g
�

x

e−tta−0 dt\
dG
dx

"a\x#�−xa−0e−x "29#

is the incomplete Gamma function[ Therefore\ the solu!
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tion "11# is not fully determined to this order\ as arbitrary
multiples of the eigensolution "17# can be added[ Thus\
the wall temperature for large x is given by

u"l#
w "x#�f½ ?9"9#x¦

e
e−0

f½ ?9"9#ln"x#¦f½ ?0"9#¦[ [ [

�x¦
e

e−0
ln"x#¦c¦[ [ [ "20#

2[2[ Numerical solution

To obtain a numerical solution of Eqs[ "7#Ð"00# that
hold for all values of x\ starting at x�9 and proceeding
downstream until the asymptotic solution given by Eq[
"29# is attained\ we use the method of continuous trans!
formation ð00Ł[ Thus\ applying the transformation

c"x\z#�x1:2"0¦x#0:2F"x\z#\

u"x\z#�x0:2"0¦x#1:2H"x\z#\ z�yx−0:2"0¦x#0:2 "21#

to Eqs[ "7#Ð"09# yields H�1F:1z and F is determined
from the equation

d12F

1z2
¦

"1¦2j2#

"2¦2j2#
F
11F

1z1
−

"0¦2j2#

"2¦2j2# 0
1F
1z 1

1

�
j

2 0
1F
1z

11F
1z 1j

−
1F
1j

11F

1z1 1 "22#

where to accommodate for the x0:2 singularity as x:9\
we have used the variable j�x0:2 as the streamwise vari!
able[ The transformed boundary conditions "00# become

F"j\9#�9\
11F

1z1
"j\9#¦j"0¦j2#−0:2 1F

1z
"j\9#

�−"0¦j2#−0\
1F
1z

"j\�#�9[ "23#

Finally\ the wall temperature is given by

uw"x#�x0:2"0¦x#1:2 1F
1z

"x\9#[ "24#

It should be noted that Eqs[ "21#Ð"23# reduce to Eqs[
"01#Ð"03# for small values of x\ and to Eqs[ "08#Ð"10# for
large values of x[ The ~uid velocity and the heat ~ux on
the wall are given by

uw"x#�x−0:2"0¦x#0:2 1F
1z

"x\9# "25#

qw"x#�x−1:2"0¦x#1:2 1H
1z

"x\9#[ "26#

Eqs[ "22# and "23# have been solved numerically using a
modi_cation of the _nite!di}erence method of Merkin
ð05Ł[

3[ Results and discussion

Fig[ 0 shows the full numerical solution of Eqs[ "22#
and "23# for the scaled temperature on the wall
H"j\ 9#�j−0"0¦j2#−1:2uw"j#\ plotted against j�x0:2\ in
comparison with the small values of j solution\ see Eq[
"07#\

h"j#
w "j#�"0¦j2#−1:2 s

i�9

j

jif ?i"9# "27#

for j�9\ 5\ and with the large values of j solution\ see
Eq[ "20#\

h"l0#
w "j#�j1"0¦j2#−1:2 "28#

h"l1#
w "j#�j1"0¦j2#−1:2

¦
2e

e−0
j−0"0¦j2#−1:2 ln"j#[ "39#

From Fig[ 0 it can be seen that as more terms from j�9
to j�2 are considered in the series expansion "27#\ the
better is the agreement with the full numerical solution
for small values of j[ In fact\ the "j¦0#!terms small j

solution "27# can be used approximately up to j�9[0\
9[2\ 9[6 and 1 for j�9\ 0\ 1 and 2\ respectively[ By taking
more than four terms in the series expansion "27# the
agreement with the full numerical solution is only slightly
improved for small values of j and\ in fact\ only the six!
terms small solution is slightly better than the four!terms
small solution and it can be used up to jE1[14 within an
error of less than 0) from the full numerical solution[
From this we can conclude that between 3Ð6 terms are
su.cient to be considered in solving Eq[ "06# for small
values of j[ At large values of j\ the one!term large j

Fig[ 0[ The scaled wall temperature H"j\9#�j−0"0¦j2#−1:2uw "j#
as obtained from the full numerical solution of Eqs[ "22# and
"23# "o o o#\ plotted against j�x0:2\ in comparison with the
"j¦0#!terms small values of j solution "27# for j�9\ 5\ and with
the one!term "! = !# and two!terms "! ! !# large values of j solutions
"28# and "39#[
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solution "28# approaches asymptotically the scaled full
numerical solution which tends to unity as j:�[
However\ when the logarithmic term is taken into
account it can be seen that the two!terms large j solution
"39# is a signi_cant improvement and it can be used for
j−1[4 with an error of less than 0) from the full numeri!
cal solution[ It is only in the range 1[14³j³1[4 that it
may be considered necessary to use the full numerical
solution in order to obtain an accurate solution[
However\ it is worth noting that at the point of inter!
section j¼1[3 of the curves h"4#

w "j# and h"l1#
w "j#\ where the

largest deviation from the full numerical solution H"j\9#
occurs\ the relative error is less than 2)[

Further\ in order to investigate whether the con!
vergence of the series "07# can be accelerated we apply
the Shanks method ð06Ł namely\ instead of the partial
sum "27# we consider the sequence

en
i �

en−0
i¦0 en−0

i−0 −"en−0
i #1

en−0
i¦0 ¦en−0

i−0 −1en−0
i

\ n�0\m\ i�n\"1m−n# "30#

where m�j:1\ j�1\ 3 or 5 and e9
i �u"i#

w for i�9\ j[
Fig[ 1 shows the numerical results for the full numerical

solution of Eqs[ "22# and "23# for the scaled temperature
on the wall H"j\ 9# in comparison with the corresponding
scaled Shanks solutions "30# for j�1\ 3 and 5[ From this
_gure it can be seen that only for j�1 does the Shanks
method accelerate slightly the convergence of the series
"27#\ whilst for higher values of j such as 3 or 5 the speed
of convergence is not signi_cant[

Fig[ 2 shows the temperature pro_les u"j\ z# as
obtained from the full numerical solution of Eqs[ "22#
and "23#\ plotted on a linear!log scale as a function of
z\ for various values of j�x0:2�9[0964\ 9[3864\ 9[6464\
9[8864\ 1[3664\ 3[7664\ 6[6464\ 09[2064 and 04[3264[
From this _gure it can be seen that the temperature

Fig[ 1[ The scaled wall temperature H"j\9#�j−0"0¦j2#−1:2uw"j#
as obtained from the full numerical solution of Eqs[ "22# and
"23#\ plotted against j�x0:2\ in comparison with the Shanks
solutions "30# for j�1\ 3 and 5[

Fig[ 2[ Temperature pro_les u"j\ z# as obtained from the full
numerical solution of Eqs[ "22# and "23#\ plotted against z\
for various values of j�9[0964\ 9[3864\ 9[6464\ 9[8864\ 1[3664\
3[7664\ 6[6464\ 09[2064 and 04[3264 "as j increases the curves
increase#[

pro_les\ as a function of z\ decrease towards the zero
pro_le as j decreases to zero\ whilst for large values of j

they behave like the large solution pro_le\ see Eqs[ "08#\
"20# and "21#\ namely\

u"l#"j\z#�j2 exp"−zj"0¦j2#−0:2#[ "31#

Although not presented in the paper\ it is interesting to
note that for z³4 the results presented in Fig[ 2 agree
within 0) with the six!terms small j solution "04# for
jE1[14\ and with the two!terms large j solution "11# for
j−1[4[

Finally\ for engineering practical purposes\ the full
numerical solution for the scaled temperature on the wall
H"j\9# is compared with a much simpler scaled matching
solution[ These matching solutions are not unique but
rather than having to perform a complete full numerical
solution\ it is sometimes useful\ for engineering purposes\
to seek a closed form approximate solution which may
be used with con_dence over the whole interval range of
interest[ For example\ looking for a matching solution
which agrees with the _ve!terms small j solution h"3#

w "j#
as x:9\ and with the two!terms the large j solution
h"l1#

w "j# as x:�\ we obtain the following matching
solution]

H"j#�
j"0¦Aj¦Bj1¦Cj2¦Dj3¦j4#

E¦Cj¦Dj1¦j2
¦

2e
e−0

ln"j¦0#

"32#

where

A�−44[8420\ B�02[8521\ C�04[8277\

D�00[3960\ E�−9[1877[ "33#
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Fig[ 3[ The scaled wall temperature H"j\ 9#�j−0"0¦j2#−1:2uw "j#
as obtained from the full numerical solution of Eqs[ "22# and "23#
"! ! !#\ plotted against j�x0:2\ in comparison with the matching
solution "32# "*#[

Many other best _tted matching solutions which agrees
with the solution "27# for small j and with the solutions
"28# or "39# for large j\ have been investigated\ but they
were found less accurate than the solution "32# over the
whole range of values of j[ In deriving the empirical
formula "32#\ Maclaurin series expansions valid for small
values of j were used to obtain agreement with the power
series coe.cients of h"3#

w "j#\ whilst for large values of j

the coe.cients of the Maclaurin series for the _rst term
of the right!hand side of Eq[ "32# transformed via the
change of variables j?�j−0\ were chosen such that the
coe.cients in the powers of j and j1 vanish[ Based on
this procedure\ the computation of the coe.cients given
by Eq[ "33# was made using MAPLE[ The comparison
made in Fig[ 3 between the empirical formula "32# and
the full numerical solution of Eqs[ "22# and "23# shows
that the former matching solution can be used with con!
_dence over the whole range of values of j within 0Ð1)
relative error and therefore may be used with con_dence
in engineering applications[

4[ Conclusions

In this paper a comparison between the small\ large and
full numerical solutions of the free convection boundary!
layer equations for a vertical plate embedded in a porous
medium with Newtonian heating has been considered[
We have found that\ unlike in the viscous "non!porous#
~uid ~ow situation considered by Merkin ð2Ł\ the asymp!
totics for the large values of j solution\ which occurs due
to the leading edge e}ect\ can be found analytically[

The numerical analysis shows that the full numerical
solution is very accurate[ The six!terms small j solution
can be used between 9EjE1[14\ whilst the two!terms
large j solution\ which includes a logarithmic behaviour\

can be used from j−1[4[ Between these limits the full
numerical solution could be employed if accuracies less
than 2) are required[

In order to accelerate the rate of convergence of the
small j solution\ the Shanks method has been employed
but it was found that only the three!terms solution can
be slightly improved by this technique[

Finally\ for engineering applicability a simple matching
solution for the scaled wall temperature which agrees
within 0Ð1) with the full numerical solution\ as given by
Eq[ "32#\ has been provided[

Future work will be concerned with investigating the
analogous horizontal plate situation[
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